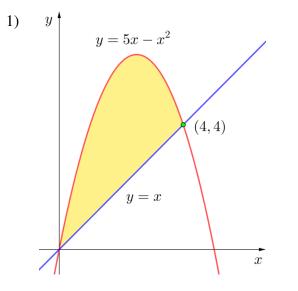
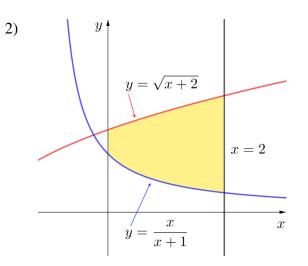
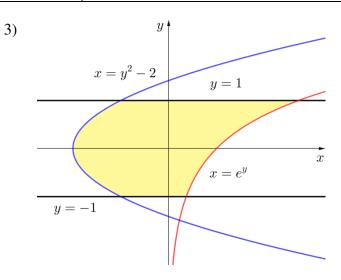
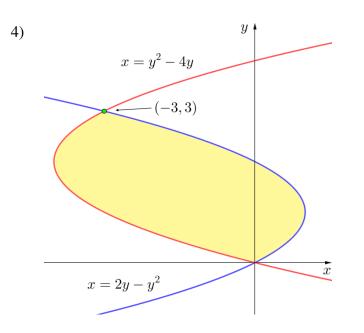
Find the area of the shaded region.

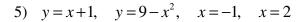


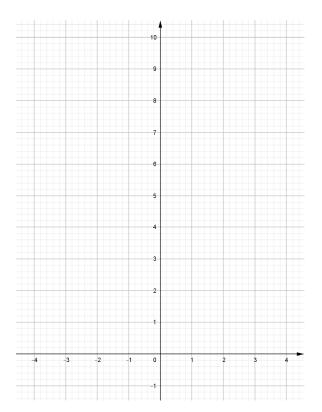


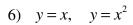




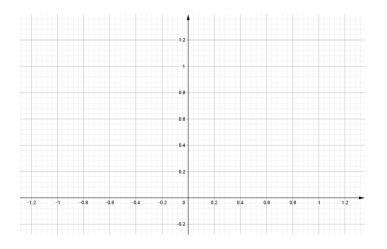
Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width. Then find the area of the region.



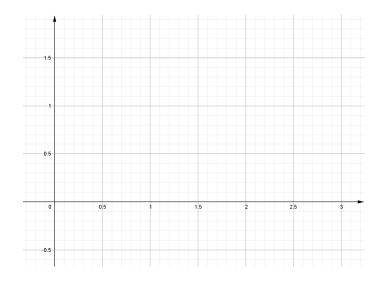




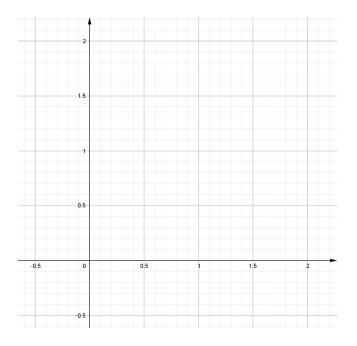


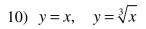


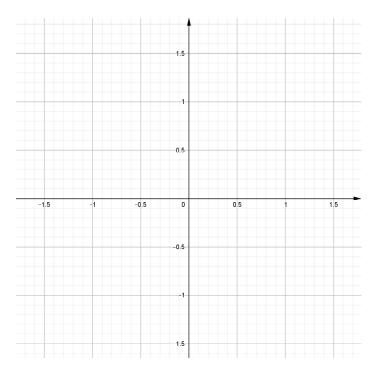
8)
$$y = \frac{1}{x}$$
, $y = \frac{1}{x^2}$, $x = 2$



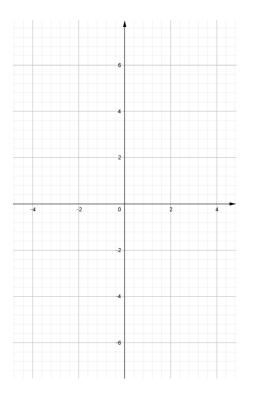
$9) \quad y = x^2, \quad y^2 = x$



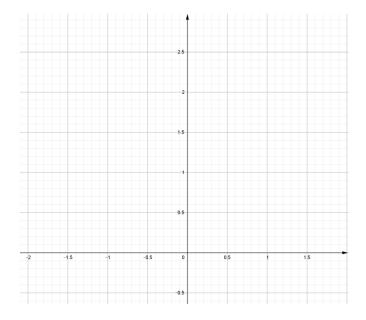




$11) \quad y = x^3 - x, \quad y = 3x$

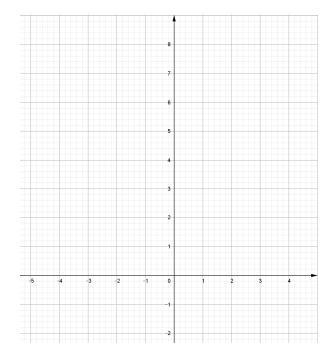


12)
$$y = x^2$$
, $y = \frac{2}{x^2 + 1}$



13)
$$y = \sqrt{x}, \quad y = \frac{1}{2}x, \quad x = 9$$

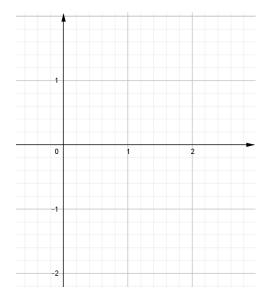
14) $y=8-x^2$, $y=x^2$, x=-3, x=3



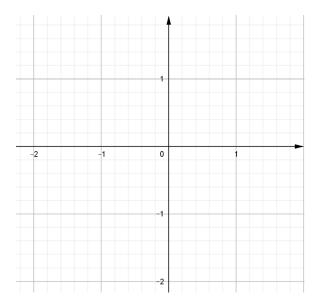
15) $y = \cos x$, $y = \sin 2x$, x = 0, $x = \frac{\pi}{2}$

	2	,	 2	
1.4				
1.2				
1.2				
1				
0.8				
0.8				
0.6				
0.4				
0.2				
0			π/	2
-0.2				

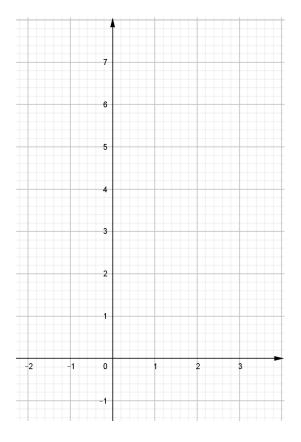
16) $x = 2y^2$, x + y = 1



17) $x=1-y^2$, $x=y^2-1$

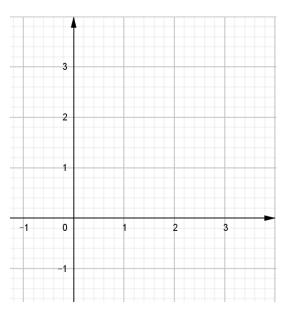


18) Use calculus to find the area of the triangle with the given vertices: (0,0), (2,1), (-1,6)



19) Use the Midpoint Rule with n = 4 to approximate the area of the region bounded by the given curves:

$$y = \sqrt[3]{16 - x^3}, \quad y = x, \quad x = 0$$



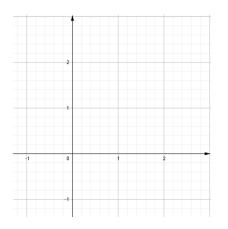
Use a graphing calculator to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves.

 $20) \quad y = x^2, \quad y = 2\cos x$

21)
$$y = x\cos(x^2)$$
, $y = x^3$

22) The curve with equation $y^2 = x^2(x+3)$ is called **Tschirnhausen's cubic**. If you graph this curve you will see that part of the curve forms a loop. Find the area enclosed by the loop.

23) Find the area of the region bounded by the parabola $y = x^2$, the tangent line to this parabola at (1,1), and the *x*-axis.



24) Find the number b such that the line y = b divides the region bounded by the curves $y = x^2$ and y = 4 into two regions with equal area.

25) Find the values of c such that the area of the region enclosed by the parabolas $y = x^2 - c^2$ and $y = c^2 - x^2$ is 576.